|
3x + 1 问题
从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。你会发现,序列最终总会变成 4, 2, 1, 4, 2, 1, … 的循环。
例如,所选的数是 67,根据上面的规则可以依次得到:
67, 202, 101, 304, 152, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17,
52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...
数学家们试了很多数,没有一个能逃脱“421 陷阱”。但是,是否对于 所有 的数,序列最终总会变成 4, 2, 1 循环呢?
这个问题可以说是一个“坑”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从 3x + 1 问题的各种别名看出来: 3x + 1 问题又叫 Collatz 猜想、 Syracuse 问题、 Kakutani 问题、 Hasse 算法、 Ulam 问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做 3x + 1 问题算了。
直到现在,数学家们仍然没有证明,这个规律对于所有的数都成立。 |
|